Definition

An inner product on a vector space over a field is a function that satisfies the followings:

For arbitrary and ,

(1)  (Linearity for the first argument)

(2)  (Conjugate symmetry)

(3) if and only if  (Positive semidefiniteness)

Examples

Standard inner product

Definition

A standard inner space in is defined for and as

Note that for the Euclidean norm,

Angle between vectors

The standard inner product on is related to the angle between two vectors . Let be the angle between the two vectors and let . Then, applying the second law of cosine gives

Now substitute .

\lVert \mathbf{x}-\mathbf{y} \rVert_2^2 &= (\mathbf{x}-\mathbf{y})^\top(\mathbf{x}-\mathbf{y}) \\ &= \mathbf{x}^\top \mathbf{x} + \mathbf{y}^\top\mathbf{y} -2\mathbf{x}^\top\mathbf{y} \\ &= \lVert \mathbf{x} \rVert_2^2 + \lVert \mathbf{y} \rVert_2^2 -2\mathbf{x}^\top\mathbf{y} \\ &= \lVert \mathbf{x} \rVert_2^2 + \lVert \mathbf{y} \rVert_2^2 -2\lVert \mathbf{x} \rVert_2 \lVert \mathbf{y} \rVert_2\cos\theta \end{align*}$$ Hence,

\cos\theta = \dfrac{\mathbf{x}^\top\mathbf{y}}{\lVert \mathbf{x} \rVert_2 \lVert \mathbf{y} \rVert_2}.