Theorem
Let f : R β R be a continuous function on the interval [ a , b ] .
Then, for any positive Ξ΅ , there exists n β N where for some
n -degree polynomial p n β ,
β₯ f β p n β β₯ C 0 β β€ Ξ΅ holds.
Proof
Without loss of generality, let a = 0 and b = 1 . Since f is continuous on [ 0 , 1 ] , let M as:
M = x β [ 0 , 1 ] sup β β£ f ( x ) β£ := β₯ f β₯ 0 β .
Consequently, for any ΞΎ β [ 0 , 1 ] , the following holds:
β£ f ( x ) β f ( ΞΎ ) β£ β€ β© β¨ β§ β 2 Ξ΅ β β£ f ( x ) β£ + β£ f ( ΞΎ ) β£ β β€ 2 M β€ 2 M β
1 β€ 2 M ( Ξ΄ β£ x β ΞΎ β£ β ) 2 β if γ β£ x β ΞΎ β£ < Ξ΄ otherwise. β
Therefore we can conclude that
β£ f ( x ) β f ( ΞΎ ) β£ β€ 2 M ( Ξ΄ β£ x β ΞΎ β£ β ) 2 + 2 Ξ΅ β .
Now, we will prove that the polynomial of interest is actually the Bernstein polynomial .
β£ B n β ( x ; f ) β f ( ΞΎ ) β£ β = β£ B n β ( x ; f ) β B n β ( x ; f ( ΞΎ ) ) β£ = β£ B n β ( x ; f β f ( ΞΎ ) ) β£ = β Ξ½ = 0 β n β ( f ( n Ξ½ β ) β f ( ΞΎ ) ) ( Ξ½ n β ) x Ξ½ ( 1 β x ) n β Ξ½ β β€ Ξ½ = 0 β n β β f ( n Ξ½ β ) β f ( ΞΎ ) β ( Ξ½ n β ) x Ξ½ ( 1 β x ) n β Ξ½ = B n β ( x ; β£ f β f ( ΞΎ ) β£ ) β€ B n β ( x ; 2 M ( Ξ΄ β£ x β ΞΎ β£ β ) 2 + 2 Ξ΅ β ) = Ξ΄ 2 2 M β ( x 2 + n 1 β ( x β x 2 ) ) β Ξ΄ 2 4 M ΞΎ β + Ξ΄ 2 2 M ΞΎ 2 β + 2 Ξ΅ β β
The last line is due to the properties of Bernstein polynomials.
Next, let ΞΎ = x . Then consequently,
β£ B n β ( x ; f ) β f ( x ) β£ β β€ Ξ΄ 2 2 M β β
n ΞΎ β ΞΎ 2 β + 2 Ξ΅ β β€ 2 Ξ΄ 2 M β β
n 1 β + 2 Ξ΅ β β
The last line is due to the fact that the maximum value of the function x β x 2 on the interval [ 0 , 1 ] is 4 1 β .
Finally, choose n such that it satisfies n β₯ Ξ΄ 2 Ξ΅ M β . Then for any x β [ 0 , 1 ] ,
β£ B n β ( x ; f ) β f ( x ) β£ β€ Ξ΅
and equivalently,
β₯ B n β ( β
; f ) β f β₯ C 0 β β€ Ξ΅ .
This completes the proof.
\tag*{$||$}